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Coherent States and Coordinate-Free Quantization 
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The usual quantization procedures interpret canonical transformations in an 
active way linking them with unitary transformations, while the quantization 
procedure offered by coherent states completely separates classical canonical 
transformations and unitary operator transformations. By exploiting this prop- 
erty, along with a physically motivated shadow metric, it is seen how to realize 
the quantization process in as coordinate-free a form as holds in classical 
mechanics. 

1. INTRODUCTION 

The inner beauty of classical mechanics as a theory cannot be denied, 
and the author is happy to join those who have professed an "affair of the 
heart" with this formalism (Sudarshan and Mukunda, 1974). One of the 
most beautiful aspects of classical mechanics is surely the Hamiltonian 
formulation and its invariance under canonical coordinate transformations. 
Indeed, this very invariance is a reflection of the existence of a deeper 
geometrical structure--symplectic geometry--that underlies the coordi- 
nate invariance (Arnold, 1980) (much as a Riemannian geometry ensures 
coordinate invariance in that realm). How natural it would be, then, for 
quantum mechanics also to exhibit a corresponding invariance (or at least 
covariance) under canonical transformations of coordinates. To be sure, 
quantum mechanics does exhibit an invariance of its own, namely an 
invariance under unitary transformations of the Hilbert space basis. Some 
authors assert that invariance under unitary basis transformations is a 
direct quantum reflection of the invariance under canonical coordinate 
transformations in the classical theory (Dirac, 1947, pp. 121-130; Bohm, 
1989, p. 374). This view arises naturally when one adopts a direct quantiza- 
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tion prescription in which the classical canonical variables (p, q) are 
"promoted" to canonical (self-adjoint) operators (P, Q) that satisfy the 
usual commutator [Q, P] = i(h = 1). As a consequence the simple linear 
combinations (p -q ) / v /2  and (q + p)/x/2 of classical variables are associ- 
ated with the corresponding combinations (e - Q)/v/-2 and (Q + e)/;x/~ of 
quantum variables. However, the pair of variables p = ( p -  q)/~/2 and 
c] = (q + p)/x/~ can also be considered to arise from a classical canonical 
transformation of the original pair, and it is natural to associate to this 
canonical transformation a corresponding unitary transformation that 
maps P and a into P = ( P -  a)/v/-2 and Q_. = (O + P)/x//-~ which also 
satisfy the usual commutator [Q,/~] = i. This direct association of canoni- 
cal and unitary transformations is satisfactory for linear transformations of 
the kind illustrated, but proves unsatisfactory for many nonlinear transfor- 
mations. Consider the classical canonical transformation given by 

=(p2+q2)/2 and ~ =tan-l(p/p) for which fi > 0. At the very least a 
corresponding quantum pair ff and Q ought to satisfy ff --- 0 as well as 
[Q, P] = i. However, it is known that there is no canonical pair of operators 
which are both self-adjoint when the spectrum of one of them is semi- 
bounded. This may seem like a minor and irrelevant technicality until it is 
well understood that an operator being self-adjoint or not corresponds to 
that operator being an observable or not; indeed, there is real physics in 
this "minor technicality"! Note well that for unbounded operators a 
Hermitian operator is not necessarily self-adjoint, and it is the latter and 
more stringent property that is necessary for an operator to correspond to 
an observable. 

The difficulty with the foregoing treatment, as we have presented it, is 
the adherence to an active interpretation of classical canonical transforma- 
tions as opposed to a passive interpretation. In an active transformation 
the point in question in phase space is moved against a fixed system of 
coordinates (much as exhibited by the temporal evolution brought about 
by a nonvanishing Hamiltonian). In a passive transformation, on the other 
hand, the point in question in phase space remains unchanged; rather, the 
canonical coordinate chart itself is changed (much as coordinate changes in 
a Riemannian geometry are generally viewed), As illustrated above, the 
usual quantization procedure (promoting q to the operator Q, etc,) in- 
evitably leads to an active interpretation of canonical transformations. To 
reinterpret canonical transformations as passive transformations we will 
need to exhibit an alternative quantization procedure that completely 
decouples the canonical transformations of the classical theory from the 
unitary transformations of the quantum theory. Such an alternative quan- 
tization procedure is implicit in a view toward quantization that is offered 
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by coherent states (Klauder and Skagerstam, 1985). The approach devel- 
oped in the next two sections not only achieves the goal of a quantization 
scheme that possesses the invariances of classical mechanics, but it does so 
in a way that simultaneously provides a rigorous mathematical formulation 
of the quantum mechanical path integral as well (Klauder, 1988). 

2. COHERENT STATES 

In the simple cases of interest to us here the coherent states are, first 
of all, unit vectors in Hilbert space that are in a continuous one-to-one 
correspondence with points of the classical phase space. For a single degree 
of freedom, phase space is two dimensional and thus the set of coherent 
states forms a smooth two-dimensional manifold in Hilbert space. In order 
to identify the phase-space points, we lay down a set of canonical coordi- 
nates, and for each point we use the same coordinate values to identify the 
image vector in the set of coherent states. In symbols, if (p, q) denote the 
two real coordinates of a phase-space point, then we denote by ~p, q) the 
coherent state associated with the point. Moreover, this association must 
be continuous, namely if (p ,q)~(p ' ,q ' )  as real numbers, then 
~p, q)-~ ~p', q ' )  in the sense of strong convergence; stated otherwise, the 
coherent-state overlap function (Pl, ql~o2, q2} is required to be jointly 
continuous in both-label sets. Thus a continuous path (p(t), q(t)), 
t' < t < t" - T + t', in phase space also corresponds to a continuous path 
[p(t), q(t)) in Hilbert space. Finally, we require that a positive measure 
d#(p, q) on phase space exists such that 

I = f ~  , q)(p, q[ d~(p, q) 

namely, that the identity operator I admits a continuous resolution in terms 
of one-dimensional projection operators [p, q)(p, q[. If (p, q) correspond to 
canonical coordinates, then there is one natural measure on phase space, 
the Liouville measure, and we seek sets of coherent states such that 
dp = C dp dq for some positive constant C. 

There are many solutions to this limited set of conditions even for 
coherent states based on canonical operators. Let P, Q be self-adjoint, 
irreducible Heisenberg operators, where [Q, P] = i holds on a common 
domain on which they both are essentially self-adjoint. Next choose an 
arbitrary, normalized fiducial vector 10), and define 

q )  -- e e' QI0) 
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for all (p, q) e R 2. These then are the canonical coherent states as we shall 
use them; they differ by a phase factor from another commonly used 
definition, namely 

ei(PQ-qP)tO ~ = eipq/2 e-iqP eipQlO ) 

Of course, any such phase factor disappears when the projection operator 
[P, q)(P, q] is considered. The operator 

~ ~p, q)(p, ql dp dq 

has the property that it commutes with the unitary operator e -ese e irQ for 
all r, s, and by Schur's Lemma the integral in question must be propor- 
tional to the identity operator. An explicit calculation leads to the well- 
known form of the resolution of unity given by 

I = f ~ ,  q)(p, q[ dp dq/2zc 

which holds true for any normalized fiducial vector [0) (Klauder, 1963). 
To exhibit additional properties of the canonical coherent states it is 

expedient to impose next a very weak restriction on the fiducial vector, 
namely that 

<01el0>=0, <0la[0>--- 0 

It then follows that 

(P, qlP~, q> = P, <p, qtQlp, q> = q 
showing that the coherent state labels, p and q, just represent the mean 
values of the Heisenberg operators P and Q, and are not eigenvalues of any 
operator. More generally, the mean value of an operator ~ = g ( P ,  Q) is 
given by 

(p, ql~(e, Q)[p, q> = <0l~(e +p, a + q)[0> 

= H(q, p) 

For ,~  an arbitrary polynomial it is known that ~vf is uniquely determined 
by its diagonal matrix elements H(p, q) for any choice of the fiducial vector 
(Klauder, 1964). Of course, the indicated evaluation depends heavily on the 
chosen parametrization of the coherent states; under a coordinate transfor- 
mation these mean values will change. 

Let us consider a transformation from the canonical variables (p, q) to 
another set of canonical variables (p, ~). For the single degree of freedom 
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under consideration a canonical transformation requires only that the 
Jacobian of the transformation is unity. Since the coherent states are in 
one-to-one correspondence with the points of phase space, then under such 
a coordinate change each one of the coherent states is unchanged, only its 
label is changed, in general. Specifically, 

Lv, q)  = ~, ~) -= exp[-iq(ff, ~])P] exp[ip(p, #)Q][0) 
Observe that the Dirac notation effectively forces us into a notational abuse 
here inasmuch as the functional dependence of ~, q)  on/~ and ~ is in 
general quite different than the dependence of [p, q)  on p and q. If instead 
we had denoted Lp, q)  by O[p, q] [as was the author's custom some years 
ago (Klauder, 1963, 1964; McKenna and Klauder, 1964)], then after the 
canonical coordinate transformation we would have tD[p, q-] = O[p, q], em- 
phasizing that although the coordinates and the functional dependence 
have changed, the coherent state vectors themselves have remained invari- 
ant. With this notational point understood, it follows, after a canonical 
coordinate change, that 

i= f ol d: 

oleO, o> = p(:, r 
4,/5, OIQ~, q)  = q(/5, ~) 

(P, qlg(P, O)lP, ~) = n(p, ~) -- H(p(p, c7), q(/~, q)) 

The important point to observe here is that the classical coordinate 
transformations are completely passive; no change of the coherent-state 
vectors, and certainly no change of the quantum operators, occurs. 

It is now perfectly accetable to use the (polarlike) canonical coordi- 
nates/~ and ~ introduced earlier, so that, for example, the expectation 

1 Q 2  1 2 (p, ql~(p2+ c)[v,q)=~(p +q2) 

where c = (O[(P2 + Q2)[O), reads, after the transformation, as 

1 Q2 (p, ol (?2+ -c)L:,0) =: 

while the operator whose mean is so evaluated remains absolutely un- 
changed by this coordinate transformation. Of course, there is a completely 
separate covariance of the identity operator and invariance of the expecta- 
tion values under an arbitrary but simultaneous unitary transformation of 
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the coherent state vectors and the operators of the form 

~v,q)~U~v,q)  

P ~ UPU* 

Q ---, UQ u* 

~,~ff(e, Q)~  u~(P ,  Q)U* 

Further evidence of the passive nature of canonical coordinate trans- 
formations when coherent states are involved may be found if the fiducial 
vector satisfies the equation (Q + iP)[O ) = O; observe that in making this 
choice we have conveniently chosen units so P and Q appear to have the 
same dimensions. With this choice of fiducial vector then it is known that 

H(p, q) = (p, ql~ff(P, Q)~, q)  

uniquely determines a general operator ~ even when it is no longer 
restricted to be a polynomial (McKenna and Klauder, 1964). In addition, 
a wholly different operator representation opens up in the form (Sudar- 
shan, 1963; Klauder and Sudarshan, 1968, Chapter 8) 

g = fh(p ,  q)~, q)(p, ql dp dq/2rc 

This prescription (weakly) defines an operator for any function h that is 
polynomially bounded, and such operators are dense in the set of all 
operators in almost any desired sense. This diagonal coherent-state repre- 
sentation of operators was discovered by Sudarshan (1963) in the context 
of quantum optics, and it is the basis of a number of the quasiclassical 
formulations of quantum optics. 

Under a canonical coordinate transformation from (p, q) to (p, ~]), it 
follows that 

= fh(fi ,  q)~, gl)(fi, gll dfi dgl/2n 

namely, the diagonal weight function has changed its dependence on the 
coordinates according to the relation 

h(fi, ~1) =-- h(p( ,fi, ~), q(/~, ~)) 

but neither the coherent-state projection operators nor the represented 
operator ~ have changed at all. On the other hand, the diagonal coherent- 
state representation is covariant under a simultaneous unitary transforma- 
tion of the coherent states and the represented operator of the form 
~o, q ) ~  U~o, q) and ~ --r U~ffU*. 
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We next observe that if ~ is Hermitian, then both h(p, q) and H(p, q) 
are real, and this property is preserved under (real) canonical coordinate 
and unitary operator transformations. In general, h(p, q) and H(p, q) differ 
from one another, but the difference terms are O(h) and thus vanish in the 
limit that h ~ 0. Typically the O(h) terms are extremely small and do not 
significantly affect the quantitative or qualitative properties of either h(p, q) 
or H(p, q). We conclude from this that we can safely interpret the physical 
meaning of either h(p, q) or H(p, q) as the physical meaning of the 
expression that results in the limit h ~ 0. When ~/f(P, Q) is the Hamiltonian 
operator the limiting expression is the classical Hamiltonian, and we thus 
conclude that either h(p, q) or H(p, q), depending on the circumstances, 
can serve in the role of classical Hamiltonian. These expressions may 
indeed depend on h, but in this context h is just an extra parameter in the 
classical theory having no other significance. Finally, we note the general 
relation between h(p, q) and H(p, q) in the special coordinates and for the 
harmonic oscillator ground-state fiducial vector, namely, 

h(p, q) = e _h(~2/ap2 + o2/~q2)H(p ' q) 

where in this case the dependence on h of the distinguishing operation is 
explicitly given. Stated alternatively, in the present case H(p, q) is the 
normally ordered symbol of Jr ,  while h(p, q) is the anti-normally ordered 
symbol of ~ (Klauder and Sudarshan, 1968, Chapter 8). 

2.1. Quantum and Classical Action Principles 

We close this section by offering once again an old application of the 
forgoing ideas in which H(p, q) is the natural candidate to choose as the 
classical Hamiltonian (Klauder, 1963; Klauder and Skagerstam, 1985). 
Recall the action functional for quantum mechanics given by (h = 1 again) 

1 e = i(O(t)[ ~ ]O(t)) - (0(t)lYflC'(t)) dt 

Extremizing this expression over variations of I that vanish at the 
endpoints leads to the Schrrdinger equation 

.d 

On the other hand, what is the consequence of making a restricted set of 
variations? In particular, let [r lp(t), q(t)} denote the limited form 
vectors can assume, in which case 

Ie ll~,>=~.q> = f [i(p(t), q(t)' ~ ~v(t), q(t) ) - (P(t), q( t ) l~( t ) ,  q(t) ) l  dt 
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It is a simple exercise to show that 

d 
i(p(t), q(t)[ ~ [p(t), q(t)) = p ( t ) ~  q(t) 

holds for any choice of Io) that satisfies the weak conditions (O[P[O)= 
(OIQ]O) = o. Consequently, 

IQ lifo = ~.q) = f [p(t)(t(t) -- H(p(t) ,  q(t))] dt 

which is nothing but the classical action Ic,  the extremal variation of 
which, holding the endpoints fixed, leads to the classical Hamiltonian 
equations 

q(t) = OH/Op(t) 

[~(0 = --~H/~q(t)  

Stated otherwise, there is only one action principle (IQ) in physics, that for 
quantum mechanics; by suitably restricting its domain, the quantum action 
(IQhe,>=to,q>) equals the classical action (Ic). Thus, a partial degree of 
quantization is already attained merely by reinterpreting any classical 
action as the restricted version of an appropriate quantum action (Klauder, 
1964) t 

The result that restricting the quantum action to coherent states results 
in the classical action applies to a wide variety of physical systems and their 
associated coherent states. For two recent articles utilizing this general 
viewpoint see Zhang et al. (1990) and Wiener et al. (1991). 

3. COORDINATE-FREE QUANTIZATION 

3.1. Classical Mechanics 

In this section we adopt 

I = f [ p  dq + dG(p, q) - h(p, q) dt] 

as the classical action from which the Hamiltonian equations 

~t(t) = 8h/&p(t) 

[~( t) = - Sh / ~q( t) 

follow from extremal variations that hold the endpoints fixed. Since the 
endpoints are fixed, the same equations of motion arise for any choice of 
G. Thus there is an equivalence class of actions all of which lead to the same 



Coherent States and Coordinate-Free Quantization 517 

equations of motion. We have chosen the function h to represent the 
classical Hamiltonian, since we will soon identify h as the weight function 
in the diagonal coherent-state representation of the quantum Hamiltonian. 

A canonical coordinate transformation implies the existence of a 
function F such that 

p dq = p d# + dF(q, #) 

Given that the classical Hamiltonian transforms as a scalar, 

h(p, (~) = H(p,  q) 

it is clear that there exists a function 6 which incorporates the effects of G 
and /~  so that 

I = .f [/5 dq + dG(fi, t~) - h(/~, q)] dt 

Thus the equivalence class of classical actions is invariant under canonical 
coordinate transformation. Clearly, extremal variations holding the end- 
points fixed lead to the Hamiltonian equations 

~( t) = ~#/,~/5( t) 

p(t) = -~E/d?t(t) 

which are therefore identical in form in any canonical coordinate system. 
This invariance reflects the underlying symplectic geometry of classical 

mechanics. Symplectic geometry is characterized by a (phase-space) mani- 
fold M and symplectic form co, a closed nondegenerate two-form (Arnold, 
1980). Since co is closed, then it is the exterior derivative (d) of a one-form 
O, co = dO, at least locally. This one-form 0 is not unique, and various one 
forms 0 + d G  for arbitrary G are equally acceptable since d(O + dG) = co 
just as well. With h chosen as a scalar on M it follows that 

I = .f [0 + dG - h  dt] 

provides a coordinate-free characterization of each action in the equiva- 
lence class. As far as possible, it is just this kind of coordinate-free 
description we seek to find in the quantum theory. 

3.2. Shadow Metric 

As we have seen, in one set of canonical coordinates a harmonic 
oscillator reads (p2 + q2)/2, in another set it reads p. How is one to know 
when a given coordinate expression refers to a harmonic oscillator or to 
some other physical system without recourse to a "coordinate-free oscilla- 
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tor"? We claim that one needs to have a shadow metric da z on a flat 
two-dimensional replica of phase space with which one is able to keep track 
of the various canonical coordinate systems including the special Cartesian 
ones. For example, if the coordinates of the shadow metric are chosen so 
that da2=dp2+dq  2, then one is assured that an expression like 
1 2 2(p + q2) + 2q4 which looks like a quartic anharmonic oscillator actually 
refers to a genuine, physical quartic anharmonic oscillator, or �89 q2), 
which looks like a harmonic oscillator, is a harmonic oscillator. Moreover, 
after a certain canonical coordinate change (p, q)~(/3, ~), as described 
above, then �89 q2) =/3, and to recognize that/3 actually refers to a 
harmonic oscillator one need only observe that the shadow metric now 
reads da 2 = dfi2/(2/3) -1- (2/3) d~ 2. In brief, the physics underlying the form 
invariance of Hamilton's equations is coded into a shadow metric on a flat 
phase space--"shadow" because it does not appear in the formulation of 
Hamilton's equations. Thus the shadow metric implicitly keeps track of the 
physical system to which the mathematical expression for the Hamiltonian 
refers. 

3.3. Continuous-Time Regularization of Path Integrals 

It is probably true that most readers will have encountered the formal 
path integral expression 

~ g f e x p { i f [ p o + G ( p , q ) - h ( p , q ) ] d t } ~ p ~ q  

perhaps without the G term, and again most readers have been sufficiently 
well conditioned as to know what kind of quantum mechanical matrix 
element it presumably represents. It is clear that this formal path integral 
is incomplete by itself since this expression is formally covariant (invariant 
if G is changed as well) under a canonical coordinate transformation. If, 
instead, the formal path integral were complete, a complicated classical 
Hamiltonian could be rendered simple merely by a coordinate change, and 
this would have the consequence that the spectrum of the quantum 
Hamiltonian would also be changed. To prevent such misapplications of 
the formal path integral the shadow metric needs to be invoked. In a lattice 
regularization of the formal path integral, canonical coordinates must be 
identified in which a natural and naive lattice action is correct; these 
coordinates are just Cartesian coordinates of the shadow metric. Indeed 
most derivations of the phase-space path integral proceed from the opera- 
tor formulation and derive an acceptable lattice-space regularized form of 
the path integral that most people have already seen and probably have 
been preconditioned to substitute, at least mentally, for the formal path 
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integral itself. We ask the reader to please suspend any preconceived 
interpretation and instead just accept the formal path integral as it stands, 
as we now introduce a less than standard regularization that also invokes 
the shadow metric in order to make it well defined. 

Let us initially interpret the formal path integral as 

l i m ~ f e x p { i f [ p ( g + G ( p , q ) - h ( p , q ) ] d t }  
v- .~ ,  o o  

Observe first that the v-dependent factor in the integrand formally goes to 
unity as v ~ o% leading to something like the original expression. Observe 
also that the v-dependent factor involves a flat phase-space metric--the 
shadow metric itself--here expressed in Cartesian coordinates, @2+ dq2. 
The inserted factor, together with a formal factor from ~ and the formal 
flat measure, may be replaced by Wiener measure on phase space. Thus we 
further refine our interpretation of the path integral by replacing the 
previous expression by 

lim2~rexp(vT/2) f e x p { i f [ p d q + d G ( p , q ) - h ( p , q ) d t ] } d # ~ ( p , q )  

where we have anticipated the proper prefactors and have denoted by P~v 
a Wiener measure describing Brownian motion on a fiat two-dimensional 
space with diffusion constant v. 

In the latter form the paths p(t) and q(t) are explicitly Brownian in 
character, and as such the integral Sp(t)dq(t) cannot be defined as a 
conventional Stieltjes integral (because Brownian motion paths have un- 
bounded variation). However, the integral can be well defined as a stochas- 
tical integral (Ikeda and Watanabe, 1981), which we adopt in the 
Stratonovich form 

f , p(t) dq(t) = lim ~ ~ (Pk+, + Pk)(qk + l -- qk) 
c ~ O  

where qk = q(kc + t'), k = 0, 1, 2 , . . . ,  K = T/E, etc. Wiener measure needs 
to be pinned somewhere, say at the initial time t '  at p( t ' )=p '  and 
q(t') = q'. However, since the complex conjugate expression must corre- 
spond to the time-reversed matrix element, it follows that if the Wiener 
measure is pinned at the initial time t '  it must also be pinned at the final 
time t" = T + t', T > 0, say at p(t") = p" and q(t") = q". Thus the Wiener- 
measure regularized path integral is well defined for all v < o~, depends on 
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four variables and two times (or one time difference), and is of the form 
K(p", q", t"; p', q', t'). 

As v ~ ~ one must determine whether the limit exists, and if so, 
whether the limit has anything to do with solutions of the Schr6dinger 
equation. Affirmative answers to both questions have been provided else- 
where (Daubechies and Klauder, 1985), and here we quote only the result: 

K(p", q", t"; p', q', t') 

= (P", q"l e-i"~T~ 9", q'> 

=lim27Eexp(vT/2) 

where 

+ dG(p, q) - h(p, q) dt]} d#~(p, q) 

~p, q> - e -iG(p.q) e -iqe eipOtO ) 

(Q + iP)10> = 0 

= fh(p,  q)[p, q)(p, ql dp dq/2,~ 
3 

just as before (save for the phase G). This result holds for all classical 
Hamiltonians h that have global classical solutions. 

Although the path integral involves Brownian motion paths, the 
Stratonovich prescription ensures that the ordinary rules of calculus are 
still satisfied (Ikeda and Watanabe, 1981). Thus a canonical coordinate 
change is still given by p(t) dq(t) = p(t)dq(t) + dF(q(t), ~t(t)), and the same 
function G exists, so that, after such a change, the Wiener-measure regu- 
larized expression reads 

K(P", C~", r'; p', ~', r) 

= (/~", ~"[ e x p ( - i ~ T ) p ' ,  ~'> 

=l im2nexp(vT/2)  fexp{ i f [pd( l+dG(P'?t ) -h(P '? t )d t]}  

Observe that, just as stressed in the previous section, the coordinate 
transformation is passive, so that, in particular, the Hamiltonian operator 

has remained unchanged. 
Finally, the propagator can be given a coordinate-free formulation in 

the form 
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Here K(t"; t'): M x M ~ ~ and/Z~v denotes an intrinsically defined Brown- 
ian motion that also depends on M x M since it is pinned initially and 
finally. Observe that if h = 0, the propagator reduces to the reproducing 
kernel o~: M • M ~ c~ given by 

: ~ = l i m 2 ~ e x p ( v T / 2 )  

In coordinates, the reproducing kernel just corresponds to the coherent- 
state overlap function�9 In coordinate-free form the propagator K(t; t') is a 
solution of the Schr6dinger equation (Daubechies and Klauder, 1985; 
Klauder, 1988) 

where 

�9 a t b ( t )  
- - ~  = ~O(t)  

subject to the boundary condition that 

lira K(t; t') = 
t - * t "  

We close by emphasizing that the continuous-time, Wiener-measure 
regularized path integral not only offers a coordinate-free formulation of 
the quantization process itself, but at the same time provides a rigorous 
mathematical formulation of path-integral quantization involving genuine 
(countably additive) measures on the space of continuous functions. 

Finally, we note that additional applications of these ideas have been 
presented elsewhere to the quantization of spin systems (Daubechies and 
Klauder, 1985), to the quantization of pseudospin systems (Daubechies et 
aL, 1987), and even to a speculative, but nevertheless natural, quantization- 
proposal for the gravitational field (Klauder, 1990). 

DEDICATION 

It is a pleasure to dedicate this article to the 60th birthday of George 
Sudarshan. His gentle manner and remarkable creativity have both been 
persuasive forces among his admirers and his followers. 
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